Как проверить качество раствора

Содержание

Как проверить качество раствора

Новости

Блестящий выбор

Современные требования к металлическим изделиям, которые используются в строительстве (сантехнические приборы, фурнитура, кровельные материалы и т.д.) уходят намного дальше таких понятий, как прочность, надежность, долговечность. С каждым годом все более актуальными становятся вопросы дизайна, цвета, формы изделий.

Строительные растворы и контроль их приготовления

Выбор составов раствора. Прочность, монолитность и долговечность каменной кладки во многом зависят от правильности выбора состава растворов. Для строительных растворов установлены следующие марки: 4, 10, 25, 50, 75, 100, 150, 200 и 300. Марки и виды растворов для различных видов каменных работ устанавливают в соответствии с требованиями Инструкции по приготовлению и применению строительных растворов (СН 290-74). Существует ряд сухих строительных смесей (заводского изготовления), оптимальных по своим свойствам и составу для использования в кладочных растворах.
В современном жилищном строительстве чаще всего применяют растворы марок 50, 75, 100, 150 и 200 (см. табл. 1.34). Для их приготовления обычно используют портландцементы: с минеральными добавками, пластифицированные и гидрофобные, шлако- и пуццолановые портландцементы, а также специальные низкомарочные цементы.
В качестве заполнителя для обычных строительных растворов применяют песок, удовлетворяющий требованиям ГОСТ 8736. Кроме того, в качестве заполнителя можно использовать ракушечный песок, топливные шлаки, а также керамзитовый песок.
Составы растворов для каменной кладки с применением цементов различных марок приведены в таблице 1.34.

Составы растворов для каменной кладки и монтажа полносборных зданий
При установлении приведенных в таблице составов растворов принято, что цементы марок 200-500 имеют насыпную плотность 1 100 кг/м 3 . Если насыпная плотность имеющегося в наличии цемента отличается от вышеуказанного более чем на 10 %, то состав раствора должен быть пересчитан. Песок принят в рыхлонасыпном состоянии с естественной влажностью 1-3 %. Известь принята II сорта плотностью 1 400 кг/м 3 ; при применении известкового теста I сорта количество теста уменьшают на 10 %.
Для повышения пластичности и водоудерживающей способности растворов в их состав обычно вводят неорганические пластификаторы (известь или глину) или органические микропенообразователи.
Приготовление строительных растворов. Растворы для каменной кладки, как правило, приготовляют на центральных растворных узлах. При приготовлении раствора следует тщательно контролировать дозировку его составных частей и продолжительность перемешивания, а также следить за своевременностью его перевозки и употребления в дело.
Процесс приготовления смешанных растворов с неорганическими пластификаторами, а также цементных и известковых растворов начинают с подачи в растворосмеситель воды, затем загружают песок, вяжущее и пластификатор. Продолжительность перемешивания с момента окончания загрузки материалов в растворосмеситель для тяжелых растворов (плотностью 1 500 кг/м 3 и более) не менее 1 мин., для легких (плотностью менее 1 500 кг/м 3 ) – не менее 2 мин. При приготовлении растворов с использованием органических пластификаторов сначала перемешивают пластификатор с водой в течение 30-60 с, а затем загружают остальные материалы и перемешивают еще не менее 1 мин до получения однородной смеси. При использовании готовых сухих смесей смесь затворяют водой и перемешивают (согласно прилагаемой инструкции), как правило, в два этапа; повторное добавление воды не допускается.
Для транспортирования раствора к месту его потребления широко используют самосвалы и растворовозы. Однако транспортирование раствора самосвалами приводит к потере цементного молока в пути через щель между бортом и днищем, что снижает качество раствора. Кроме того, зимой раствор сильно охлаждается, а летом под прямыми лучами солнца высыхает; помимо всего, при выгрузке из кузова самосвала часть раствора задерживается внутри кузова, и приходится производить его очистку вручную. Взамен самосвалов в настоящее время широко применяют авторастворовозы.
Контроль качества строительных растворов. При поступлении раствора на строительную площадку его качество проверяется на соответствие ГОСТ 5802. Контролируют следующие показатели: подвижность, расслаиваемость, плотноть и объем воздуха, вовлеченного в раствор, прочность на сжатие и морозостойкость.
Подвижность раствора. Для каждого состава раствора определяют его подвижность, особенно при изменении качества составляющих. При одном и том же качестве материалов подвижность раствора определяют на растворном узле не менее трех раз в смену. Показатель подвижности раствора определяют глубиной погружения в него эталонного стального конуса (см. табл. 1.35).

Для этого сосуд наполняют смесью примерно на 1 см ниже его краев.
Уложенный раствор штыкуют 25 раз стержнем диаметром 10-12 мм и встряхивают 5-6 раз легким постукиванием сосуда о стол. Острие конуса приводят в соприкосновение с поверхностью раствора в сосуде, опускают штангу до соприкосновения со стержнем конуса и устанавливают стрелки на нулевое деление циферблата. Затем нажимают на пружинную кнопку, предоставляя конусу свободно погружаться в раствор. Через 10 с. опускают штангу до соприкосновения со стержнем конуса и производят отсчет с точностью до 2 мм.
Подвижность растворной смеси определяют как среднее арифметическое результатов двух испытаний. Острие конуса приводят в соприкосновение с раствором, устанавливают конус в отвесное положение и дают ему возможность свободно погружаться в растворную смесь. Показатель подвижности определяют по делениям на конусе.

Данные рабочей подвижности раствора в летних и зимних условиях в зависимости от его назначения

Для обычной кладки из сплошного кирпича,
а также для кладки из бетонных
и естественных камней легких пород……………………………………..….9-13 см
Для обычной кладки из дырчатого кирпича
или керамических камней со щелевыми пустотами……………………… 7-8 см
Для бутовой кладки…………………………………………………. ……….4-6 см
Для заливки пустот при бутовой кладке…………………………………… 13-15 см
Для вибрированной бутовой кладки…………………………………………1-3 см

Расслаиваемость растворной смеси определяют в тех случаях, когда при транспортировании или хранении смесь расслаивается и нарушается ее однородность. Для определения расслаиваемости растворной смеси пользуются специальным прибором. Прибор наполняют растворной смесью вровень с краями, закрывают крышкой и устанавливают на вибростоле.
Показатель расслаиваемости определяют как среднее арифметическое результатов двух испытаний. Для удобоукладываемых растворов расслаиваемость не должна превышать 30 см 3 .
Плотность растворной смеси определяют в тех случаях, когда при приготовлении растворов применяют органические пластификаторы – микропенообразователи. Плотность растворной смеси определяют с помощью цилиндрического сосуда объемом 1 л с насадкой.
Объем воздуха, вовлеченного в раствор, определяют в тех случаях, когда растворы приготавливают с добавкой органических пластификаторов – микропенообразователей. Обычно оптимальное количество органического пластификатора в кладочном растворе устанавливают по показателю воздухововлечения. Он не должен превышать 5 %. Это достигается при условии, если отношение плотности растворов смесей с пластификатором и без него (в остальном состав один и тот же) будет не менее 0,94.
Прочность раствора на сжатие определяют на образцах-кубах размером 70,7х70,7х70,7 мм в возрасте, установленном в технических условиях на данный вид раствора. На каждый срок испытания изготовляют три образца.
В случае, когда подвижность растворной смеси 5 см и более, образцы-кубы изготавливают в металлических формах, установленных на кирпич без поддона, а при растворных смесях с подвижностью менее 5 см – в формах с поддонами.
Образцы из растворных смесей с подвижностью 5 см и более готовят следующим образом: трехгнездовую металлическую ферму без поддона предварительно смазывают машинным маслом и устанавливают на кирпич, поверхность которого покрывают мокрой газетной бумагой. Керамический кирпич должен иметь влажность не более 2 % и водопоглощение 10-15 % (по массе). Затем все три отделения формы заполняют растворной смесью за один прием с некоторым избытком, уплотняют ее в каждом отделении формы 25 нажимами стального стержня диаметром 10-12 мм, срезают избыток растворной смеси смоченным водой ножом вровень с краями формы и заглаживают поверхность. Повторное использование кирпича в качестве отсасывающего воду основания не допускается.
Образцы из растворных смесей подвижностью менее 5 см изготовляют в формах с поддонами. Собранную и смазанную форму заполняют растворной смесью в два слоя высотой примерно по 4 см каждый. Уплотнение слоев смеси в каждом отделении формы производят 12 нажимами шпателя: шестью нажимами вдоль одной стороны и шестью – в перпендикулярном направлении. Избыток растворной смеси срезают смоченным водой ножом вровень с краями формы и заглаживают поверхность.
Образцы, изготовленные на гидравлических вяжущих, выдерживают до распалубки в камере нормального хранения при температуре 20±2°С и относительной влажности воздуха 95-100 %, а изготовленные на воздушных вяжущих – в помещении при температуре 20±2°С и относительной влажности воздуха 65±10 %.
Выдерживают образцы в формах в течение суток ±2 ч., после чего их извлекают из форм и каждый образец нумеруют на верхней поверхности стираемой краской. Образцы, изготовленные из медленно твердеющих растворных смесей, могут быть освобождены из форм в возрасте 2-3 сут.
После освобождения из форм образцы следует хранить при температуре 20±2°С. При этом необходимо соблюдать следующие условия:
– образцы, изготовленные на гидравлических вяжущих, в течение первых трех суток следует хранить в камере нормального хранения при относительной влажности воздуха 95-100 %, а оставшееся до испытаний время – в помещении при относительной влажности воздуха 65+10 % (из растворов, твердеющих на воздухе) или в воде (из растворов, твердеющих во влажной среде);
– образцы, изготовленные на воздушных вяжущих, следует хранить в помещении при относительной влажности воздуха 65+10 %.
В случае когда в строительной лаборатории нет камеры нормального хранения, допускается хранение образцов, изготовленных на гидравлических вяжущих, во влажном песке или опилках. При этом образцы складируют вдали от приборов отопления, защищают от сквозняков и т. п.
Образцы, хранившиеся в воде, вынимают из нее не раньше чем за 10 мин до испытания и вытирают влажной тканью. Образцы, хранившиеся в помещении, очищают волосяной щеткой от песчинок и пыли. Каждый образец перед испытанием осматривают, измеряют и определяют его объем с точностью до 1 см 3 , затем взвешивают на технических весах и вычисляют плотность раствора с точностью до 10 кг/м 3 .
Испытания образцов раствора производятся в лабораторных условиях при температуре 20±2°С и относительной влажности в помещении 50-70%.
Работник строительной лаборатории, выполняя испытания образцов растворов, должен следить, чтобы плоскости пресса, соприкасающиеся с испытуемым образцом, были очищены. Испытываемый образец устанавливают на нижнюю опорную плиту пресса центрально относительно его оси так, чтобы основанием служили грани, соприкасающиеся со стенками формы при изготовлении образцов.
При испытании образцов на сжатие разрушающая нагрузка должна укладываться на выбранной шкале в границах 20-80 % максимального усилия, соответствующего выбранному диапазону. Использование участка шкалы пресса ниже 20 % ее максимального усилия или испытание образца силой менее 10 % предельно развиваемого прессом усилия не допускаются. Во время испытания нагрузка на образец должна возрастать непрерывно, с постоянной скоростью, не более 0,6±0,4 МПа/с до его разрушения. Достигнутое в процессе испытания максимальное усилие принимают за показатель разрушающей нагрузки.
Прочность на сжатие каждого образца вычисляют как частное от деления разрушающей нагрузки на рабочую площадь образца. Прочность раствора на сжатие вычисляют как среднее арифметическое результатов испытаний трех образцов-кубов.
Определение прочности раствора испытанием на изгиб и на сжатие образцов-балочек размером 40х40х160 мм выполняют согласно рекомендациям ГОСТ 5802. Морозостойкость раствора определяют по ГОСТ 5802 в тех случаях, когда это требуется по проекту.

Читайте также:  Можно ли добавлять грунтовку в цементный раствор

По материалам справочника “Универсальный справочник прораба” НТЦ «Стройинформ»

Как оценить качество кирпичной кладки

Качество кладки кирпича зависит от знаний и опыта, которыми обладают осуществляющие работы специалисты. Установленные стандарты, правила и нормы для армокаменных и каменных конструкций являются базой подготовки профессиональных строителей.

Свод правил (СП 15.13330.2012) разработал Центральный научно-исследовательский институт строительных конструкций им. В.А. Кучеренко и утвердил 12.29.2011 г. приказом Министерства регионального развития Российской Федерации.

При подготовке документов были учтены требования для сооружений и зданий регламента безопасности, в том числе пожарной, а также указания закона о техрегламенте от 22.06.2008 г. В последующие годы Минстроем в законодательные положения вносились изменения.

Для российского климата все новые конструкции и реконструкции сооружений с применением природного камня, блоков из бетона, силикатного или керамического кирпича должны проектироваться в соответствии с настоящим сводом. Исключением являются только здания, относящиеся к:

  • тепловым агрегатам;
  • гидротехническим сооружениям;
  • тоннелям и трубам;
  • мостам;
  • строениям, подверженным динамическим нагрузкам.

Действие данных норм не распространяется на работы, проводимые в сейсмоопасных районах и в условиях вечномерзлых грунтов.

Важные требования

  1. Влажностно-температурный режим, теплотехнические параметры построек, пожаробезопасность, долговечность, способность нести нагрузку обеспечивают материалы, изделия и конструктивные решения, соответствующие ГОСТ 4.219, ГОСТ 4.210, ГОСТ 4.206.
  2. Для зимних условий возможность возведения и необходимые для этого мероприятия необходимо предусмотреть заранее на этапе проектирования.
  3. Эксплуатация зданий должна проходить в нормальных условиях, исключающих повреждения и деформации, выходящие за расчетные значения. Последние должны иметь начальные характеристики, обеспечивающие эксплуатационную пригодность и требования безопасности, касающихся армокаменных и каменных конструкций
  4. Эксплуатационные требования, конструктивные решения, арматура, клеи, клеевые растворы, легкие и тяжелые смеси, блоки, камень, кирпич используются с характеристиками, которые соответствуют нужным условиям по энергоэффективности, долговечности, эксплуатационной пригодности и безопасности.
  5. СП 131.13330, СП 22.13330, СП 28.13330, СП 20.13330 устанавливают правила возведения и защиты построек в агрессивных средах, определяют значения относительной влажности, температуры воздуха снаружи объектов строительства, предельные деформации, допустимые ограничения по воздействиям и нагрузкам.

Требования к материалам

Стандарты для изготовления крупных блоков, камней, бетонов, применяемых для возведения армокаменных и каменных конструкций растворов, камня и кирпича, определяются ГОСТ №№: 30459, 24211, 13579, 5802, 8462, 51263, 25485, 4.219, 4.210, 31357, 31189, 9479, 6133, 4001, 379, 530, 4233, 28013.

Перечисленные государственные стандарты определяют применение классов и марок стройматериалов:

  • камень и кирпич средней прочности — М100, 125, 150; 200;
  • кирпич и камень (керамические, природные, легкие бетонные) малой прочности — М7, 10, 15, 25, 35, 50, 75;
  • камень и кирпич высокой прочности — М250, 300, 400, 500, 600, 800, 1000 (в том числе бетонные и природные).

Кроме этого, стандарты выделяют по прочности на сжатие следующие классы бетонов: силикатные, поризованные, крупнопористые, полистиролбетоны, ячеистые, на пористых заполнителях, тяжелые (В1-30). Менее прочные бетонные смеси могут применяться в качестве утеплителя.

По морозостойкости материалы из камня разделяются на F10, 15, 25, 35, 50, 75, 100, 150, 200 и 300.

Растворы используются 0,4 Мпа с прочностью на сжатие по среднему пределу. Выделяются следующие марки: М200, 150, 100, 75, 50, 25, 10, 4.

Правилами определяются для предполагаемых сроков службы зданий и сооружений (25-100 лет) значение морозостойкости (F) различных кладочных материалов:

  1. Внешние стены, выполненные в 2 слоя (внутренний не более 1200 кг/м³) и массивной кладки при мокром режиме влажности имеют показатель морозостойкости 25 для 25 лет службы, 35 — 50 лет и 50 — 100 лет. Нормальный и сухой режим для 100 лет будет 25, 25 лет — 15.
  2. Если стены выполнены с утеплением и имеют 3 слоя, то для 120 мм кладки лицевого слоя показатель морозостойкости равен 15 для 25 лет и 35 — 100 лет.
  3. Части стен, расположенные под землей, цоколи и фундаменты из природного камня для 100 лет службы будут иметь морозостойкость 35, 25 лет — 25. Если используется керамический клинкерный кирпич, бетонные блоки или силикатные блоки более М200, то морозостойкость для 100 лет равна 100 и 25 лет — 25.

СП 63.13330 устанавливает нормы, по которым нужно армировать конструкции из камня и кирпича:

  • классы металлической арматуры В500 и А240 можно использовать для сетчатого армирования;
  • В500, А300, А240 подойдут для связи, анкеров, поперечной и продольной арматуры.

СП 16.13330 содержит требования для стали, которую следует применять в соединительных накладках и закладных деталях.

Технология монтажа

Нормы, установленные для процесса кладки, должны выполняться полностью. Для разных работ рекомендуется брать специалистов, соответствующих 2-5 разряду.

Соответствие применяемого кирпича и кладочного раствора заданным параметрам проверяется перед началом работ.

  1. На основание ставятся деревянные проемы, производится разметка стен.
  2. При необходимости размещают порядовку (рейку).
  3. Для возведения стены натягивается шнур.
  4. Готовится раствор и кирпич.
  5. Возводятся стены — укладывается на раствор кирпич.
  6. Работы по завершении проверяются.

На деревянные элементы нагрузку снижают установкой над проемами швеллеров.

Рабочая площадка разбивается на несколько зон:

  • Вспомогательный участок занимает немногим больше полметра — для прохода.
  • Место для размещения материалов. Тут располагают лицевой и рядовой кирпич, раствор. Понадобится около 1,5 м в ширину.
  • Рабочая зона — место, где находятся каменщики. 70-90 см вдоль части стены.

Правила определяют порядок расстановки на делянке материалов:

  1. на линии простенка ставят поддон с кирпичом, раствор в емкости располагают напротив стеновых проемов, если они предусмотрены;
  2. материал для теплоизоляции, например, сыпучие заполнители и арматуру, чередуют с основными стройматериалами для облегченной кладки.

Смеси М150 для кладки и штукатурки (пескобетон) в сухом виде могут облегчить строительство небольшого частного дома. Раствор можно готовить по мере необходимости на месте.

Для монолитных перемычек, армопояса, заливки фундамента нужны составы более дорогих марок. Для лицевой кладки декоративного кирпича используют цветные смеси — раствор колерованный.

Кладочные растворы

Они могут быть сложные и простые (в соответствии со СНиП):

  • когда среди компонентов имеются глиноцементные или цементно-известковые составляющие — смеси сложные;
  • если в составе присутствует 1 вяжущее вещество — раствор простой.

Пластичность раствору придают модифицирующие добавки. Кроме самана (камня из глины), все остальные типы кирпича можно класть на цементный раствор с добавкой извести. С целью экономии для возведения хозяйственных построек применяют смесь глины и цемента.

Шлаковый и пемзовый легкий или кварцевый тяжелый песок — оба подходят для кладки в качестве наполнителя. От общей массы раствора вода составляет менее 30%.

Кладка внутренних стен и перегородок

По своей структуре используется разная кладка для перегородок внутри здания. Выбор определяется весом сооружения. Конструкция, являющаяся несущей, должна его выдержать.

Могут быть использованы следующие схемы кладок:

  1. В полтора кирпича. Обладает большой массой и используется для производственных построек. Во внимание принимается большой вес станков и другого оборудования, который должны выдержать несущие конструкции.
  2. В 1 кирпич. Нуждается в усилении плит перекрытия. Используется нечасто. Обладает немалым весом и хорошей прочностью.
  3. В полкирпича. Стандартные плиты перекрытия кладка выдерживает хорошо. В панельных и других зданиях подходит для укрепления стен. Утеплитель помещается в воздушную прослойку в стене. Получается конструкция прочная и жесткая.
  4. На ребро. Вес, который нужно держать, является минимальным. Полезная площадь расходуется по минимуму.

Если стену нужно оставить без отделки, то применяют облицовочный кирпич.

Техника безопасности

Процесс кладки нуждается в безопасной организации. Для этого требуется:

Для всех нужно иметь каски и спецодежду. Индивидуальные защитные средства, обувь также требуются для каждого работника. Кроме них, монтажный пояс тоже относится к предметам первой необходимости. Он надевается и правильно закрепляется для выполнения действий на высоте.

Некоторые виды работ не могут осуществляться без применения респираторов и защитных очков.

Утилизация отходов производится из контейнеров, в которые периодически собирается мусор.

Правила кирпичной кладки

Ограждающие и несущие конструкции регламентированы правилами и нормами. СНиП определяет качество кладки и его оценку:

Кладка кирпича выполняется по следующим рекомендациям:

  • Больше чем на 10 мм не могут отклоняться углы и вертикальная поверхность кладки для 1 этажа и 15 мм для зданий на 2 этажа. Угольником проверяют качество углов, и на каждом ярусе по 2 раза уровнем и отвесом контролируют вертикальность кладки.
  • Не более 15 мм допускается отклонение по горизонтали на каждые 10 м. Кирпичная кладка на каждом ярусе проверяется по 2 раза. Нужны правило и уровень.
  • Менее 10 мм разрешено превышение по вертикали наложенной 2-метровой рейки для выявления неровностей.
  • Прогоны и балконы, плиты перекрытия, опорные детали балок — все сборные элементы требуют укладки тычковых рядов для перевязки швов в несколько рядов.
  • По проекту ставятся перемычки для дверных и оконных проемов. Длинные плиты при состыковке допускают разницу отметок менее 10 мм. 5 мм — для плит, короче 4 м.
  • 3 арматуры закладываются в швы кладки на каждые 2 м, если нужно перевязать кладку позже.
  • Когда временными креплениями или перекрытиями не раскреплены неармированные перегородки из кирпича толщиной 12 см, то их высота берется не более 1,8 м.
  • Швы, которые не заполнены раствором, допускают при кладке впустошовку глубину не больше 15 мм снаружи и менее 10 мм в вертикальных швах столбов.
  • Шов армированной кладки должен быть менее 16 мм.

Показатели расчета кирпичной кладки

Перед выполнением расчета производят линейные замеры толщины, длины и высоты стен. В соответствии с нормами несущая стена может быть толщиной от 12 до 64 см. Кладка в 2 и 2,5 кирпича в последнее время используется мало, так как получили распространение различные теплоизолирующие материалы.

Читайте также:  Как класть шлакоблоки на раствор

На объем 1 кирпича нужно разделить весь объем стен, который высчитывается исходя из проекта здания.

Полученное число — приблизительное (завышенное) количество материала. Точное значение можно получить, если принять во внимание размеры кладочного шва.

Тонкий шов получается при использовании мелкозернистого песка. Если нужно увеличить его величину, то в кладочный раствор добавляют крупнозернистый песок.

3-10 мм — допустимая ширина шва. Нормальной стандартной толщиной считается 5-6 мм.

Также следует учесть, что производители часто не соблюдают по тем или иным причинам ГОСТ и выходят за заданные размеры кирпича. Применение точных цифр снизит погрешность при расчете.

Нижние слои кладки и фундамент испытывают большое давление, если для обеспечения хорошей теплоизоляции и высокой прочности строения повсеместно использовать кладку в 2 кирпича — 500 мм толщиной. Для облегчения конструкции и экономии материала проектировщики часто уменьшают толщину кладки там, где это возможно без ухудшения жесткости и прочности сооружений.

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Как узнать, насколько качественный цемент

Как проверить качество цемента?

А ведь качественный и настоящий цемент, очень важный элемент на стройке. Если цемент будет плохим, низкого качества, то и бетон, штукатурка, стяжка пола, и т. д., также будут иметь не идеальные характеристики. Каким образом можно проверить качество цемента? Что будет, если использовать плохой цемент для строительства?

Что может произойти, если цемент плохого качества?

Некачественный цемент обязательно даст про себя знать через короткий промежуток времени. Кроме того, при использовании плохого цемента, его расход существенно увеличивается, что само собой, разумеется, приводит к непредвиденным финансовым растратам.

Будь то стяжка пола или фундамент, неважно, о какой прочности бетона можно говорить, если для его приготовления был взять плохой цемент? Конечно же, потом, со временем, на стенах появляются трещины из-за усадки фундамента или лопается стяжка пола, из-за использования некачественного цемента.

Сегодня все чаще на строительных рынках можно купить цемент низкого качества. Мало того, что он ещё и просрочен на пару месяцев, так для его изготовления брались непонятно какие компоненты. Ниже, в данной статье строительного журнала https://samastroyka.ru/ будет рассказано о том, из чего именно делают поддельный цемент.

Поддельный цемент — чем заменяют настоящий товар?

Вот пришли вы на рынок в надежде купить цемент. Нашли самую низкую цену, приехали домой, и давай строить. А знаете ли вы, что возможно приобрели поддельный цемент, ведь хороший и качественный продукт, не может стоить малых денег.

Если говорить о подделке, то вместо цемента можно приобрести:

  • Доломитовую пыль (большой процент содержания) вместо основных компонентов портландцемента;
  • Порошок от огнетушителей, тщательно перемешанный с пылью из фильтров цементных заводов;
  • Просроченный цемент, который перемалывают обратно до нужной консистенции.

Соответственно, купив поддельный цемент, о качестве бетонной конструкции можно забыть раз и навсегда. Вот почему так важно покупать цемент, только у проверенных компаний и производителей, которым дороже своя репутация, нежели выгода.

Как проверить качество цемента

Теперь рассмотрим несколько способов, как проверить качество цемента, не отходя от кассы. В первую очередь следует понимать, что вскрывать мешок цемента в магазине, без приобретения, вам никто не даст. Второе, следует знать, что вес цемента намного ниже, чем гипсовой смеси, поэтому можно заранее определить, по весу, качество продаваемой продукции (однако это не всегда точно).

Если говорить про магазинную проверку цемента, то можно пойти ещё одним путем: проверить, насколько сыпучим остался цемент в углах мешков. Если есть хоть малейшее подозрение на возможную окаменелость цемента, то от его покупки лучше всего сразу же отказаться, поскольку перед вами просроченный цемент, низкого качества.

Более точно определить, насколько качественный цемент, можно либо в лабораторных условиях, либо дома. Для проверки цемента в домашних условиях, возьмите небольшое количество минеральной воды «Ессентуки 17», после чего, попробуйте замешать, используя минералку, небольшое количество цемента в металлической посуде.

Если перед вами качественный цемент, то он обязательно:

  1. Изменит цвет, станет немного зеленоватым или синеватым;
  2. Практически сразу же затвердеет (некачественный цемент может застывать полчаса и более, по времени);
  3. Металлическая емкость для замешивания цементного раствора, станет заметно теплее (цемент начнёт выделять тепло).

В том случае, если есть возможность потрогать и пощупать цемент рукой, перед покупкой, то обратите внимание на следующие моменты:

  1. При сжатии в руке, качественный цемент не станет комком, он обязательно рассыплется в пыль, после того, как ладонь будет разжата.
  2. Цемент высокого качества имеет однородный цвет, в нем нет даже малейшего подозрения на комки.

Если вы до сих пор сомневаетесь и не уверены в правильности своих действий, то следуйте самым проверенным способом, определения качества цемента, из всех вышеперечисленных.

Во-первых, не лишайте работу лабораторий, ведь всегда можно обратиться к специалистам за помощью. Во-вторых, почитайте реальные отзывы покупателей цемента в своем городе, наверняка такие найдутся в каждом регионе России, Украины, и, других стран.

Приемка ремонтных работ: как проверить качество штукатурки?

Качественно проведённые штукатурные работы – залог хорошего ремонта. Для принятия работы бригады строителей, самостоятельной оценки качества штукатурного слоя нужно знать требования, предъявляемые при приёмке таких работ.

В данной статье собраны все требования для проверки штукатурных работ. Делайте ремонт качественно.

Требования к качеству различных видов штукатурных работ

Данные требования содержатся в ГОСТе № 28013/98 «Строительные растворы» и в приложении № 8 СНиПа № 3.04.01/87. Согласно этим документам, штукатурная смесь должна соответствовать следующим критериям:

  • смесь, применяемая для обрызга или грунтования, просеивается через сито с ячейками не более 3 мм;
  • смесь для накрывки или однослойной штукатурки — через сито с ячейками не более 1,5 мм;
  • подвижность раствора — от 5 до 12 см;
  • уровень расслаиваемости – до 15%;
  • размер показателя водоудержания смеси – не менее 90%;
  • прочность покрытия определяется величинами, заложенными в проект.

В этих бумагах содержится следующая информация:

  • дата, точное время приготовления раствора;
  • марка штукатурной смеси;
  • тип используемого вяжущего вещества;
  • общий объём;
  • показатель подвижности;
  • наименование ГОСТа, которому соответствует смесь;
  • цена кубометра, приобретённой партии.

Оценка поверхности после оштукатуривания

Отклонения, которые допустимы при качественном выполнении штукатурных работ, содержатся в приложении № 9 и 10 СНиП №3.04.01/87:

  • отклонение поверхности по горизонтали и вертикали – 1 мм на 1 метр, по всей стене в комнате – не более 5 мм;
  • на 4 кв. метра должно приходиться не более двух неровностей с плавными очертаниями, глубина которых составляет до 2 мм;
  • отклонение от плоскости откосов, арок и столбов должно быть в пределах 1 мм по вертикали и по горизонтали;
  • допустимая погрешность криволинейных элементов от заданного проекта – не более 5 мм;
  • ширина оштукатуренных откосов может отличаться от проектной не более, чем на 2 мм;
  • погрешность в отклонении тяг от прямой оси между углами их пересечения и раскреповки не превышают 2 мм.

Ровность

Ровность стены после оштукатуривания проверяется правилом и лазерным нивелиром. Как измерять:

  1. Приложив правило горизонтально к стене, проверить отсутствие зазора между ним и поверхностью. Для измерения величины имеющегося зазора удобно использовать лазерный нивелир.
  2. Для определения ровности по вертикали необходимо включить на нивелире режим построения вертикальной оси. Сначала на поверхности вычерчивается вертикальная линия. Затем прибор прикладывается под углом 45 градусов к поверхности.

Если лазерная линия прямая, то и сама поверхность ровная. При отклонении лазера от начерченной в сторону нивелира – на стене имеется наплыв штукатурки, при отклонении в сторону от прибора – вогнутость. Размер неровности соответствует расстоянию между начерченной линией и лазерной.

Качество раствора и правильность нанесения слоев

Контроль качества штукатурного раствора осуществляется на трёх этапах:

  • подготовительном;
  • в момент нанесения;
  • во время приёмки выполненных работ.

На подготовительном этапе внимание уделяют:

  • качеству приготовленного раствора;
  • влажности стен, температуре помещения;
  • чистоте поверхностей, на которые будет наноситься штукатурка;
  • грунтованию стен, подбору раствора для грунтования.

Нанесение любого вида штукатурного раствора (цементного или известково-цементного) может производиться в один или в несколько слоёв. Допустимое их количество оговорено производителем в инструкции к раствору.

Каждый последующий слой при использовании многослойных растворов должен быть менее прочным, чем предыдущий.

Необходимость и выбор штукатурной сетки регламентируется проектом и СП 71.13330.2017. При работе с гипсовыми смесями допускается работа без штукатурной сетки.

Предлагаем к просмотру видео на тему «Минимальный и максимальный слой штукатурки»:

Адгезия

Требования к адгезии штукатурки содержатся в ГОСТе 31356-2007. Измерить показатель прочности сцепления слоя с основанием можно с помощью специального прибора – адгезиметра. Он может вычислить показатель усилий схватывания в диапазоне от 0 до 10 кН. Этот показатель означает то усилие, которое необходимо приложить для отрыва или отделения слоя в перпендикулярном основанию направлении.

Способы проверки выполненных в помещении работ

Проверка выполненной работы осуществляется по следующим пунктам и методам их контроля:

  • Отклонение от вертикали — не более 1 мм на 1 м. Измеряется с помощью правила длиной не менее 2 метров прикладыванием его к стене через каждые 2 метра.
  • Угол между стенами в прямоугольном помещении должен быть равен 90 градусам. Измеряется с помощью рулетки. Длина двух диагоналей помещения должна совпадать — это означает, что углы помещения равны 90 градусам, а стены расположены параллельно. Другой вариант измерения – строительным угольником с плечом не менее 50 см. Его прикладывают к углу на всём расстоянии от пола до потолка.
  • Параллельность стен. Измеряется рулеткой. Расстояние между стенами на всём их протяжении должно быть одинаковым.
  • Отклонение откосов, пилястр, столбов по вертикали и горизонтали — не более 1 мм на 1 м. Измеряется с помощью строительного уровня.
  • Ровность поверхности. Измеряется с помощью двухметрового правила, приложенного к стене вертикально и горизонтально.

Предлагаем к просмотру видео на тему «Насколько качественно отштукатурена поверхность стен»:

Правила приёмки результатов

При приемке выполненных штукатурных работ стоит придерживаться следующих правил и требований:

  1. Слои не отслаиваются, прочно связаны с поверхностью. Недопустимы трещины, волны, пузыри, заметные шероховатости.
  2. Все отклонения — в допустимом диапазоне: зазоры по вертикали и горизонтали, откосы.
  3. Специальные виды штукатурки (гидроизоляционная, звукопоглощающая, ренгенозащитная и другие) соответствуют предъявляемым им требованиям.
  4. Углы соответствуют 90 градусам. Им уделяется особое внимание. Все углы помещения должны иметь ровную поверхность, чёткие грани (как правильно штукатурить углы и добиться полного соответствия стандарту, мы рассказывали тут).
  5. При ударе раскрытой ладонью по поверхности стены отсутствуют гулкий звук и ощущение осыпания поверхности. При наличии этих показателей имеет место некачественное выполнение работ.
  6. Факт обнаружения погрешностей по горизонтали и вертикали — в диапазоне до 20 мм, что означает выполнение работ на «тройку». Эта погрешность будет заметна даже невооружённым глазом. Всё, что свыше этого значения – брак, который необходимо исправить.

Приёмка штукатурных работ – важный этап при ремонте. От качества их выполнения зависит окончательный результат, приятный внешний вид, срок службы проделанного ремонта.

Проблемы контроля качества штукатурных и кладочных растворов

Применяемые в течение последних нескольких лет в строительстве мелкозернистые бетоны (штукатурные смеси) и строительные (кладочные) растворы, модифицированные различными добавками (в том числе сухие строительные смеси), обладают рядом отличительных свойств от традиционных растворов и бетонов, применяемых ранее. Они обладают повышенным водоудержанием, пониженной водопотребностью, регулируемыми сроками схватывания, интенсивностью набора прочности и др. Получаемый эффект: увеличение эффективности применения материалов, улучшение качества готового «продукта», повышение долговечности, возможность варьировать эстетический облик применяемых (в основном отделочных) композиций. Однако всегда ли достигаются показатели качества изделий, которые заложены в проекте, обеспечивающие ожидаемый срок эксплуатации? Для этого было бы целесообразно проанализировать схемы реализации строительных проектов.

Очевидно, что при проектировании штукатурных покрытий (или назначении марки кладочного раствора) опираются на те технические параметры используемых материалов, которые определены паспортными характеристиками: прочность на изгиб, величина адгезиии, усадка материала и другие, среди которых далеко не последней является прочность раствора на сжатие. Этот показатель является наиболее доступным и распространённым для контроля качества затвердевшего материала.

Условно оценку качества растворов в кладке и в штукатурном покрытии можно разделить на два направления: 1 — определение соответствия качества материала (раствора) заданным проектным характеристикам (марка раствора) по действующим документам ( оценка основных параметров раствора, обеспечивающих ожидаемую долговечность конструкции при эксплуатации.

Оба направления на сегодняшний день приобретают возрастающую актуальность. Это следует из того, что номенклатура применяемых в строительстве материалов (разнообразные стеновые материалы, различные виды бетонов, оштукатуриваемые теплоизоляционные материалы и др.) весьма разнообразна по своим свойствам, и, используя раствор определенного вида и состава в разных сочетаниях, в итоге получают разные по механическим свойствам материалы (штукатурный слой, кладочный шов ). Не последнюю роль здесь играют условия применения и дальнейшего выдерживания раствора в конструкции, тем более учитывая высокий модуль контактной (особенно у кладочных растворов) и открытой поверхности. К тому же производитель работ не всегда придерживается правил ухода за твердеющим раствором.

При существующих схемах организации строительства () обязательной является процедура контроля выполненных работ. Как правило, контроль осуществляется привлекаемыми специальными строительными лабораториями, и если контрольные образцы не были изготовлены производителем работ(или не соответствуют требованиям упомянутых ранее нормативных документов), то процедура существенно усложняется. Как уже отмечалось выше, даже при несоблюдении условий хранения образцов определяемые механические параметры будут отличными от материала в конструкции.

По части первого обозначенного направления следует обратиться к Растворы строительные. Методы испытаний. Основная роль здесь при определении прочности на сжатие, растяжение при изгибе и раскалывание, а также морозостойкости отводится контрольным образцам, тогда как определение этих характеристик в готовом изделии практически не производится. Исключение составляет отбор, изготовление и испытание малогабаритных контрольных образцов из кладки ( приложение 1), что само по себе трудоёмко и не достаточно достоверно вероятного повреждения структуры штукатурного раствора в процессе отбора (обычно выдалбливания). Более достоверные результаты и, вероятно, с меньшим разбросом значений можно получить, если, используя алмазные коронки, высверливать цилиндры 040 мм. Таким образом, при толщине штукатурного покрытия 20 мм можно склеить из двух частей цилиндрический образец с отношением п/0 равным примерно 1. При этом трудоёмкий процесс подгонки размеров пластинок исключается, а испытания на сжатие осуществляются всегда в направлении нормали к поверхности покрытия. Так как чаще всего покрытие состоит из нескольких слоев, то при испытаниях будут фиксироваться значения наименее прочного слоя.

Рассматриваемое первое направление обеспечено значительной нормативной базой по правилам и методам контроля механических характеристик твердеющего бетона в монолитных конструкциях. Здесь можно сослаться на Бетоны. Методы определения прочности по контрольным образцам; Бетоны. Определение прочности механическими методами неразрушающего контроля; Бетоны. Ультразвуковой метод определения морозостойкости; Ультразвуковой метод определения прочности бетона; Бетоны. Правила контроля прочности.

В то же время на этом фоне методология выглядит весьма ограниченной. Конечно, можно возразить, что параметр прочности на сжатие для бетона, как для конструкционного материала, более важен, чем для строительного раствора, но обратимся к Растворы строительные. Общие технические условия. В нём прочность раствора на сжатие принята за один из основных показателей качества (наравне с морозостойкостью и плотностью), и осуществлена классификация строительных растворов по маркам: М4, М10, М200. Поэтому априори средства, затрачиваемые на переустройство или восстановление возникающих со временем недостатков, связанных с отклонением заданных показателей качества, выливаются в значимые финансовые затраты.

Кладочный или штукатурный раствор в настоящее время, как правило, готовится непосредственно на месте его применения, и затворяемым составом является готовая сухая смесь заводского изготовления. В других случаях раствор получают в малоемких бетоносмесителях или простых ёмкостях, из компонентов с необеспеченным оптимальным гранулометрическим и химическим составом. Ясно, что гарантировать заданные эксплуатационные характеристики в этом случае не представляется возможным. Вариантом решения проблемы может стать конкретизация, совершенствование, отработка и регламентирование дополнительных методов контроля механических свойств затвердевших растворов в конструкции.

Отечественные разработчики и производители оборудования для определения прочностных свойств строительных материалов постоянно совершенствуют и расширяют ассортимент приборов, основанных на разных принципах действия и имеющих разные диапазоны измерений. Однако основное их направление — конструкционный бетон. Большинство из этих приборов являются косвенными измерителями нужных характеристик растворов, а соответственно требуют тарировки и выполнения целого ряда единичных измерений для ориентирования на каждый достоверный результат. Можно привести для примера: (оценивающий энергию ударного импульса) и его модификации, ультразвуковой тестер , слабоимпульсный склерометр маятникового типа швейцарской фирмы Scmidt, молоток Кашкарова со специальным наконечником.

Рассматривая конкретно каждый из этих приборов, следует отметить их недостатки и ограниченность применительно для растворов разных видов. позволяет определять довольно низкие показания прочности, но для этого требуется обеспечение плоской площадки диаметром около 7–10 см в количестве 10–15 штук для одного определения прочности. Для растворов в кладке это очень трудоёмко. Приборы маятникового типа имеют примерно те же недостатки. Ультразвуковые поверхностные тестеры довольно универсальны в своём применении, но диапазон их чувствительности не охватывает полного диапазона марок растворов. К тому же на показания прибора по раствору возможно оказывает влияние материал подложки или материал кладки. Из приборов разрушающего действия отметим приборы, основанные на методах: скалывания ребра (для бетона); отрыва со скалыванием (для бетона); отрыва приклеиваемых стальных дисков (определение величины адгезии) и другие. Оценивая методики проведения испытаний разными способами, можно утверждать, что измерительные приборы разрушающего действия стоят на ступень выше приборов неразрушающего контроля, так как они наиболее близки к прямым измерениям механических характеристик материала. Поэтому при разработке методов определения прочностных показателей растворов предпочтительно ориентироваться именно в этом направлении. Представляет интерес, например, методика изготовления малогабаритных контрольных образцов непосредственно на конструкции (штукатурном слое или кладочном шве) и последующего их испытания на сжатие, скалывание Для оценки отдельных характеристик растворов (трещиностойкости, морозостойкости и некоторых других) возможно определение и использование соотношения результатов двух и более разрушающих и (или) неразрушающих методов испытаний.

Ещё один метод измерения прочности может базироваться на фиксации проникновения индентора в тело затвердевшего раствора при определённом усилии. Этот метод уже был апробирован, в частности, в ячеистых бетонах. Для адаптации его применительно к раствору необходимо провести экспериментальную работу для выявления «узких» мест метода и в случае возможности его реализации оптимизировать методику испытаний.

Рассмотрим второе направление, упомянутое ранее, — оценку механических характеристик применённых растворов для определения долговечности конструкции. Необходимость в этом может возникать как непосредственно перед сдачей здания в эксплуатацию, так и для оценки остаточной долговечности отслуживших определённый период конструкций. Было бы целесообразно выработать единое мнение о том, какие механические характеристики являются определяющими для обеспечения необходимого срока службы.

По мнению немецких испытателей, в частности для кладочных растворов, кубиковая прочность на сжатие (в России определяемая по не является непосредственно решающей характеристикой при оценке несущей способности каменной кладки. Это объясняется несоразмерностью увеличения кубиковой и так называемой «пластинчатой» прочности раствора (когда толщина раствора незначительна по сравнению с его горизонтальными размерами). Исходя из этого несущая способность каменных кладок изменяется несоразмерно увеличению прочности кладочного раствора. В то же время работы отечественных исследователей показали, что для кладочного раствора одним из основных технических параметров, определяющих несущую способность кладки, является степень адгезии раствора и кладочного материала. Сила сцепления также играет решающую роль для характеристики долговечности штукатурных покрытий. Кроме того, не раз подтверждалось опытами, что увеличение прочности на сжатие растворов не обязательно должно приводить к повышению адгезии.

Вопрос об актуальности нормирования силы сцепления для строительных растворов поднимался много раз, но не получал должного развития при дополнительной проработке нормативной документации. Возможно, возрастающее внимание к строительным растворам, представленным в сухом виде (сухим строительным смесям), будет способствовать изменению устоявшихся стереотипов об объективности показателя прочности на сжатие при оценке качества готовых штукатурных покрытий или кладочных растворов.

Как уже говорилось вначале, более широкое внедрение сухих смесей, а также технология их производства открыли обширные возможности получения составов с весьма узконаправленными характеристиками. Поэтому следует с большим интересом обращаться ко многим европейским стандартам, а также к немецким ЭНМ, предписывающим методики испытаний различных видов строительных растворов с учётом специфики их использования. Тенденция в разработке нормативной документации в России, как и в ряде других стран, направлена на гармонизацию технических требований к различным видам строительных материалов. Возникающие при этом проблемы трудно решаемы без согласования единой классификации отделочных и строительных растворов (как в готовом, так и в сухом виде). Следует отметить, что работы над созданием подобных общих документов уже давно ведутся.

Эффективность этих документов проявится со временем на практике. Тем не менее, вопрос разработки или выбора методов контроля отдельных основных характеристик применённого материала в конструкции, которые будут заданы в новых стандартах на строительные растворы, пока однозначно не определён.

Оцените статью
Добавить комментарий